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Abstract
We give a rigorous proof of the existence of spontaneous magnetization at
finite temperature for the Ising spin model defined on the Sierpinski carpet
fractal. The theorem is inspired by the classical Peierls argument for the
two-dimensional lattice. Therefore, this exact result proves the existence of
spontaneous magnetization for the Ising model in low-dimensional structures,
i.e. structures with dimension smaller than 2.

PACS numbers: 75.10.Hk, 61.43.Hv, 05.70.Fh, 05.45.Df

1. Introduction

The study of the physical models on the Sierpinski carpet [1] has been the focus of several
works in the last two decades. However, most of these papers are based on approximate
renormalization group techniques [2, 3], on perturbative expansions [4] or on numerical
simulations [5, 6]. Thus, very few rigorous results are known for this self-similar structure.
Indeed, the Sierpinski carpet is an infinitely ramified fractal, where it is not possible to apply
the exact decimation techniques, which allow us to solve many models, defined on finitely
ramified fractals, such as the Sierpinski gasket [7, 8].

A relevant theorem is given by an upper and a lower bound on the return probability
of a simple random walk [9]. These bounds prove that the spectral dimension [10] of the
Sierpinski carpet is smaller than 2. Hence, from the generalized Mermin–Wagner theorem
[11], the continuous symmetry spin models do not present spontaneous magnetization. On the
other hand, there are no general criteria relating the behaviour of the discrete symmetry models,
in particular Ising, with a simple parameter, describing the topology of the space where the
model is defined. The main known results consider the Euclidean lattices, where spontaneous
magnetization is present if the dimension is �2, and the exactly decimable fractals, which
never present spontaneous magnetization [7].
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Figure 1. The first four generations of the Sierpinski carpet graph. The sites of the graph (denoted
by points) represent the spins and the links (denoted by lines) represent the interactions.

However, the approximate calculations [2, 4] and the numerical simulations [5] suggest
that an Ising spin system on the Sierpinski carpet is spontaneously magnetized at finite
temperature. Recently, this property has been proved in [12], where it is shown that it follows
from the behaviour of percolation on the Sierpinski carpet. Here we give an alternative proof
inspired by the classical Peierls argument [13] for the Ising model on the two-dimensional
lattice and, in particular, by the version given in [14]. These theorems are the first exact results
showing the existence of an Ising transition in a low-dimensional structure, i.e. in a structure
with spectral dimension smaller than 2.

We will consider the Sierpinski carpet graph illustrated in figure 1, even if the proof can
be generalized to different infinitely ramified carpets. With each site of the graph we associate
an Ising spin and with each link a ferromagnetic interaction. We call p−

i the probability for the
magnetization of the spin i to be smaller than 1 and we show that, at low enough temperature,
p−

i < ε < 1/2 for each site i. The theorem is based on a low-temperature loop expansion of
this probability and on an estimate of the number of self-avoiding on the sites (SOS) loops.

The main difference from the two-dimensional case is that now the space, called a dual
graph, where the loops are defined, has unbounded connectivity, namely, the coordination
(number of nearest neighbours) of a site is finite but not bounded. Hence, the proof requires
more complicated mathematical techniques. Note that the standard Peierls argument results
are rather simple, as the dual of the two-dimensional lattice is again a two-dimensional lattice.
In spite of the unbounded connectivity, here we will be able to estimate the number of SOS
loops because of an important property of the dual graph, which will be called sparse high
connectivity, i.e. sites with large coordination are far apart. In particular, when the coordination
is greater than 4 × 3m, the sites are at a distance of at least 2m+1 in the intrinsic metric of the
dual graph.

Peierls argument is valuable because of the insight it gives into why the Ising model is
magnetized. Hence, we believe that this proof could be useful to find a general criterion for
the existence of spontaneous magnetization on a generic discrete structure. Note that Peierls
argument has already been used to show the existence of an Ising transition in inhomogeneous
systems, in particular in the case of diluted random graphs above the percolation thresholds
[15]. We start by introducing some definitions and notation.

2. Definitions and notation

Let us consider the Nth generation of a Sierpinski carpet. On each site i we define an Ising
spin si = ±1 and we fix the spins on the boundary to the value +1 (see figure 2). The energy
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Figure 2. A spin configuration of the Ising spin model defined on the fourth generation of the
Sierpinski carpet. The spins of the boundary are fixed to be +1. The dotted lines represent the
interactions.

of the spin system is given by

−1

2

∑
〈ij〉

sisj (1)

where the sum runs over all the pairs 〈ij 〉 of nearest neighbour sites, i.e. sites connected by
a link. In the canonical ensemble, the probability for the magnetization of the spin i to be
smaller than 1 is

p−
i =

∑si=−1
{s1,...,sN } eβ/2

∑
〈ij 〉 si sj∑

{s1,...,sN } eβ/2
∑

〈ij 〉 si sj
. (2)

In the denominator we sum over all possible spin configurations with +1 boundary conditions.
In the numerator we sum over all configurations with +1 boundary conditions and the
spin i fixed to −1. We will prove the spontaneous magnetization of the system by
showing the existence of a temperature β̄ such that, in the thermodynamic limit, ∀β > β̄,

p−
i < ε < 1/2.

The theorem will be proved in the following steps. In section 3 we introduce the dual
space and the loop expansion of equation (2). With this expansion, we prove that p−

i can be
overestimated by the sum of exp(−β|l|) over all SOS loops enclosing i (|l| is the length of the
loop l).

In section 4 we introduce a tree representation of the SOS loops of length |l| enclosing i
and passing the site α. This representation allows us to overestimate the number of loops as
Z̃l̄αi

∏
γ∈l̄′αi

z̃γ . l̄αi is a SOS loop. The product runs over the sites belonging to l̄αi excluding

the site of highest coordination. Z̃l̄αi
is the coordination number of the site representing, in the

tree, the site of highest coordination in l̄αi .
In section 5 we define the sparse high connectivity property and, using this property, we

show that
∏

γ∈l̄′αi
z̃γ � exp(K|l|) where K is a suitable real constant.

In section 6 we prove that Z̃l̄αi
� 10|l|log2(3). In particular, we exploit the fact that Z̃l̄αi

is
smaller than the number of nearest neighbours, of the site of highest coordination, which can
be crossed by a loop of length |l| and surrounding i.

In section 7 we show that the number of sites which can be crossed by a SOS loop of
length |l| and surrounding i is smaller than π(8|l|)2 log2(3). This last estimate is proved by
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Figure 3. The dashed line denotes the Sierpinski carpet and the continuous line the dual graph.
The site i belongs to the carpet, and α to the dual graph.

evaluating the maximum Euclidean distance that can be covered in the dual lattice by a loop
of |l| steps. Finally, we will obtain

p−
i �

∞∑
|l|=0

C|l|3 log2(3) e(K−β)|l| (3)

where C is a suitable positive constant. From equation (3) we have that p−
i < ε < 1/2 for

small enough temperature.
Besides the sparse high coordination property, in the proof we strongly use the fact that the

dual lattice is embedded in a two-dimensional Euclidean space and the fact that the plaquettes
of the carpet are convex sets of this space.

3. Loop expansion

In analogy with Peierls argument, we write the Hamiltonian of the system in terms of a loop
expansion. These loops belong to the dual graph of the discrete structure where the model is
defined. In particular, the dual graph of the Sierpinski carpet is obtained by introducing a site
α for each plaquette of the carpet. Then, two sites are connected if and only if there exists
a link of the carpet separating the plaquettes relevant to the sites we are considering. Hence,
there is a one-to-one correspondence between the links of the carpet and the links of the dual.
We will call Vd the set of the sites of the dual graph and Ed the set of the links. Note that
the dual graph has unbounded connectivity; hence, it must be studied with a certain caution.
The length (number of links) of the shortest walk connecting two sites ∈ Vd will be called the
chemical distance between them. In figure 3 we illustrate the Sierpinski carpet and its dual
graph.

Let us introduce a one-to-one correspondence between the spin configurations and the
self-avoiding loops of the dual graph (self-avoiding on the links). A spin configuration with
+1 boundary conditions is identified by the links of the carpet which separate the spins with
+1 magnetization and the spins with −1 magnetization. Since, by definition, each link of
the dual graph corresponds exactly to a link of the carpet, we obtain a relation between the
spin configuration and a subset L ⊆ Ed . It is easy to show that the number of links in L
adjacent to the same site α is even. Therefore, L can always be obtained as a superposition of
self-avoiding (on the links) loops. If in L there are more than two links adjacent to the same
site, the decomposition of L into loops is not unique.
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Figure 4. A spin configuration on the Sierpinski carpet and the corresponding link set L ⊂ Ed .

On the other hand, let us call L any subset ⊆ Ed such that for any α ∈ Vd the number
of links in L adjacent to α is even, i.e. L can be decomposed into loops (we will call ĒL the
set of all possible L). In a unique way we can associate with L a spin configuration with +1
boundary conditions, by fixing to +1 the spins enclosed by an even number of loops and to −1
the spins enclosed by an odd number of loops. In figure 4 we illustrate a spin configuration
and its corresponding L ⊆ Ed .

The energy of the spin configuration can be written in terms of the corresponding set of
links L. Indeed

H = −1

2

∑
〈ij〉

sisj = −|Ed | +
1

4

∑
〈ij〉

(si − sj )
2 (4)

where |Ed | is the total number of links of the dual graph. A link gives a contribution 1 to
the Hamiltonian (4), if it connects opposite spins, and gives zero, if it connects parallel spins.
Dropping the irrelevant additive constant |Ed |, we obtain H = |L|, where |L| is the number
of links in the set L ∈ ĒL corresponding to the spin configuration of energy H. If we consider
a decomposition of L into loops l, we obtain

H = |L| =
∑

l

|l| (5)

where |l| is the length of the loop l. The probability p−
i is

p−
i =

∑
L−∈Ē−

L
e−β|L−|∑

L∈ĒL
e−β|L| . (6)

In the denominator we sum over all possible sets L ∈ ĒL and in the numerator over all
subsets L− ∈ ĒL such that an odd number of loops encloses the site i. Ē−

L denotes the set of
all L− ∈ ĒL, such that an odd number of loops encloses i, while Ē+

L denotes the set of all
L+ ∈ ĒL, such that an even number of loops encloses i. Hence, ĒL = Ē+

L ∪ Ē−
L .

We will call li the shortest SOS loop belonging to L− and surrounding i (see figure 5).
Each set L− can be considered as the union of li and a suitable set of Ē+

L. Therefore,
equation (6) can be written as

p−
i =

∑
li

e−β|li |∑′
L+∈Ē+

L
e−β|L+|∑

L+∈Ē+
L

e−β|L+| +
∑

L−∈Ē−
L

e−β|L−| . (7)
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i

Figure 5. The heavy line denotes the shortest self-avoiding on the sites loop in L surrounding the
site i.

∑
li

denotes the sum over all possible SOS loops li enclosing the site i.
∑′

L+∈Ē+
L

is the sum over

all L+ ∈ Ē+
L such that L+ ∩ li = ∅ and that, in li ∪L+, li is the shortest SOS loop surrounding i.

Dropping the restriction on the sum
∑′

L+∈Ē+
L
, we obtain an overestimate of p−

i :

p−
i �

∑
li

e−β|li | ∑
L+∈Ē+

L
e−β|L+|∑

L+∈Ē+
L

e−β|L+| +
∑

L−∈Ē−
L

e−β|L−| �
∑

li

e−β|li | �
∞∑

k=0

ni(k) e−βk. (8)

ni(k) represents the number of SOS loops of length k enclosing i. Eventually, we can write

p−
i �

∑
α

∞∑
k=0

nα
i (k) e−βk (9)

where nα
i (k) is the number of SOS loops of length k, enclosing i and passing the site α of the

dual graph.
Now we take the thermodynamic limit. The theorem will be proved by showing on

nα
i (k) an exponential bound independent of i. Up to now we followed step by step the Peierls

argument for the Ising model on two-dimensional lattices [14]. However, here the dual graph is
more intricate than in the two-dimensional case, since it has unbounded coordination. Hence,
the proof of the bound on nα

i (k) requires more work.

4. Tree representation of the loops

In order to count the SOS loops of length k, surrounding i and starting from α, we represent
them into a tree. By induction on N we prove that any set of N SOS loops of length k, starting
from α′, can be represented in a tree satisfying the following properties (TP).

Each site of the tree a is associated with a site of the dual graph α(a). Nearest neighbour
sites in the tree correspond to nearest neighbour sites in the dual graph. The correspondence
is not one to one; however, if b and c are nearest neighbours of the same site of the tree,
then they represent different sites of the dual, i.e. α(b) �= α(c). Consequently, calling z̃a

the coordination number of a site of the tree and zα the coordination of a site of the dual,
we have z̃α � zα(a). One site of the tree is called the origin o. We have α(o) = α′ and
the maximum distance of any sites of the tree from o is k (k will be called the length of the
tree). There are exactly N sites at a distance of k steps from o and with each of them we
associate, in a one-to-one correspondence, one of the loops. These sites will be called ending
points e. α(e) = α′ and they are the only ones in the tree with coordination 1. Therefore,
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the number of loops represented in the tree can be evaluated by counting the ending points.
Finally, the sites crossed in the tree by the walk of k steps, connecting the origin to an ending
point e, correspond, in a one-to-one relation, to the sites of the dual graph belonging to the
loop associated with e.

The set made of any single loop can be represented by a linear chain of k + 1 sites and k
links. The first site of the chain is the origin and it corresponds to α′, the second corresponds
to the second site of the loop and so on, and the last site corresponds again to α′ and it is the
ending point of the tree.

Let us show that, if there is a tree representation for any set of N − 1 loops starting from
α′, we can add to any of these sets a new loop and produce a tree representing this new set.
We will proceed by adding a new chain to the tree, relevant to the N − 1 loops. The sites
of this tree correspond, in both representations, to the same sites of the dual graph and they
represent the first N − 1 loops. The starting point α′ of the new loop is naturally associated
with the origin o of the tree. Then, if one of the nearest neighbours of o corresponds in the
dual to the second site of the loop, we move to this site of the tree and check if one of its
neighbours corresponds to the third site of the loop and so on. Until we find that, at the step q,
no neighbour of the site represents the site reached in the (q + 1)th step of the loop. Since
we are considering SOS loops (we cannot move backward), this site is at distance q from the
origin of the tree. Now we add to this site a bifurcation and a new chain of length k − q . The
first site of this new chain corresponds to the site reached in the (q + 1)th step of the loop,
the second to the site reached in the (q + 2)th step, and the last corresponds again to α′.
So, when we add a loop to the set, we add to the tree one ending point naturally associated
with the new loop. The new neighbour sites added to the tree are neighbour also in the dual.
Furthermore, we never add to any site of the tree a a new neighbour b, such that α(b) is
already represented in the tree by a neighbour of a. This way, we produce a tree satisfying TP
properties and representing a set of N loops passing α′.

In particular, it is possible to construct the tree representing the set of all SOS loops of
length k surrounding i and starting from α. The number of these loops is equal to the number
of ending points in the tree. In figure 6 a tree corresponding to all the loops of length 7 passing
α = 0 and enclosing i is illustrated.

Let us consider a tree of length k and satisfying TP. We call ē the ending point maximizing
the product P̄ k of the coordination numbers of the sites crossed by the k steps walk connecting
the origin to ē. We prove by induction on k that the number of ending points Tk is smaller than
P̄ k .

For k = 1, the tree is given by the origin and its z̃o neighbours which are the ending
points. Hence, both P̄ 1 and T1 are equal to z̃o. Let us now suppose that Tk−1 � P̄ k−1 for any
tree of length k − 1. We need to show that, given a tree of length k, Tk � P̄ k. Cutting the
origin o from the tree of length k, the graph is disconnected into z̃o subgraphs. Each of these
subgraphs is a tree of length k − 1, satisfying TP, whose origin is one of the neighbours of o.
We will denote these trees with the index h and call T h

k−1 the number of ending points of the
tree h. Tk is equal to the sum over h of T h

k−1. Hence,

Tk =
z̃o∑

h=1

T h
k−1 �

z̃o∑
h=1

P̄ h
k−1 � z̃o max

h

(
P̄ h

k−1

)
. (10)

In the first inequality we use the fact that T h
k−1 and P̄ h

k−1 are, respectively, the number of
ending points and the maximum of the products of the coordination numbers in a tree of length
k − 1. Since the origin belongs to any of the walks connecting o to an ending point, P̄ k can
be expressed as the product of zo and the maximum value of P̄ h

k−1. Therefore, from (10) one
immediately obtains the proof.
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Figure 6. The tree corresponding to all loops of length 7 passing α = 0 and enclosing i (the loops
are represented in the tree in the clockwise direction).

In the tree representing all the SOS loops of length |l| enclosing i and passing α, we will
call w̄α

i the walk connecting the origin to ē and call l̄αi the loop associated with ē. We have

nα
i (|l|) �

∏
a∈w̄α

i

z̃a = Z̃l̄αi

∏
a∈w̄′α

i

z̃a � Z̃l̄αi
exp


∑

γ∈l̄′αi

log(zγ )


 . (11)

Z̃l̄αi
is the coordination number of the tree site m corresponding to the site µ of the loop l̄αi

with the highest coordination in the dual graph (if there are more than one sites of highest
coordination, we arbitrarily choose one of them). w̄′α

i and l̄′αi are obtained by subtracting
from the walk w̄α

i and the loop l̄αi , respectively, m and µ. In the last inequality, we use the
one-to-one correspondence between w̄′α

i and l̄′αi and the fact that the coordination number z̃a

of the sites of the tree is smaller than or equal to the coordination number zγ (a) of the relevant
sites of the dual graph.

5. Sparse high connectivity

In the dual graph, the possible values of the coordination numbers are 4 × 3mwith m = 0, 1, . . ..
Hence, we have

nα
i (|l|) � Z̃l̄

p

i
exp

(∑
m

Nl̄ ′αi (m)(log(4) + m log(3))

)
. (12)

Nl̄′αi (m) is the number of sites in l̄′αi with coordination number in the dual graph equal to
4 × 3m.

The minimum chemical distance d(m) between two sites of the dual graph with
coordination greater than or equal to 4 × 3m is

d(m) =
{

1 if m = 0
2m+1 if m > 0.

(13)
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Equation (13) represents the fundamental topological property of the dual graph of the
Sierpinski carpet which will allow us to prove the exponential bound on ni(k), even in the
absence of bounded coordination. We will call this property sparse high connectivity, since it
implies that in the topology of the dual graph generated by the chemical distance, sites with
high coordination are far apart.

For a SOS loop l, the sites with coordination �4 × 3m are less than 1 + |l|/d(m). Since
in l̄′αi we have excluded the point of highest coordination, we can overestimate the number of
sites of coordination 4 × 3m as

Nl̄′αi (m) � |l|
d(m)

. (14)

From (14) we obtain that, if m > log2(l) − 1 = mM , then Nl̄ ′αi (m) = 0. Therefore, mM

represents the maximum value of m on the sites of l̄′αi .
Thus, we have

nα
i (l) � Z̃l̄αi

exp

(
|l| log(4) + l

mM∑
m=1

2−m−1(log(4) + m log(3))

)

� Z̃l̄αi
exp

(
|l| log(4) + l

∞∑
m=1

2−m−1(log(4) + m log(3))

)

� Z̃l̄αi
exp(K|l|) (15)

where K is a suitable positive, real constant.

6. The site of highest coordination

In this section we will show that Z̃l̄αi
� 10llog2(3). If zµ � 10llog2(3) (µ is the site in the dual

graph with highest coordination), the inequality is trivially satisfied. Otherwise, we will use
the fact that Z̃l̄αi

is the coordination of a site of a tree representing SOS loops surrounding i.
Two sites of the tree are neighbours only if the corresponding sites of the dual are neighbours
and there exists a SOS loop passing through them and enclosing i. Therefore, the bound on
Z̃l̄αi

is proved by showing that the Zµ,l̄i
� 10llog2(3), where Zµ,l̄i

represents the number of
nearest neighbours of µ, which can be crossed by a SOS walk of length |l|, passing µ and
enclosing i.

Let ν and ρ be the nearest neighbours of µ. We define the distance along the boundary
r̄ν,ρ as in figure 7. In figure 7, the plaquette of the site µ is also defined.

Let us consider a SOS loop lν,ρ of length |l| passing µ and its nearest neighbours ρ and ν.
We will prove that

r̄ν,ρ � 2|l|log2(3). (16)

Furthermore, if lν,ρ encloses the site of the carpet i, from the planarity of the dual graph we
have the following property: no loop of length |l| passing µ and enclosing i can pass through
any site τ of the plaquette of µ, such that τ is located with respect to ρ in the opposite direction
of ν at a distance r̄τ,ρ > 4 × llog2(3).

An analogous property holds for the sites of the plaquette at a distance greater than
4 × llog2(3) from ν in the direction opposite to ρ. Therefore, since r̄ν,ρ � 2|l|log2(3), the number
Zµ,l̄i

of sites belonging to the plaquette of µ and crossed by a loop passing µ and surrounding
i is smaller than 10|l|log2(3). This way we obtain the bound on Z̃l̄αi

.
Let us prove (16). The dual graph is naturally embedded in a two-dimensional Euclidean

space. Since the plaquettes are convex subsets of this space, the length of the border r̄ν,ρ turns
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µ

ν

ρ

Figure 7. The plaquette of the site µ is given by the region denoted by the dashed line. The sites
within this region (excluded µ) are the sites belonging to the plaquette. The distance along the
boundary between the sites of the plaquette ν and ρ is the length of the line plotted with the heavy
line. In this example r̄ρ,ν = 6. By the dotted lines we denoted a walk in the dual graph between ν

and ρ of length 18.

out to be smaller than the length, in the Euclidean space, of any walk from ν to ρ which does
not pass through the plaquette itself. In particular, it is smaller than the length of l′ν,ρ . l′ν,ρ is
the walk obtained by subtracting µ from the loop lν,ρ . Now, a step in the dual graph, crossing
a site with coordination zρ , covers, in the Euclidean space, a distance smaller than zρ/2. We
have

r̄ν,ρ � 1

2

∑
ρ∈l′ν,ρ

zρ � 2
mM∑
m

Nl′ν,ρ (m)3m � 2l + l

log2(|l|)−1∑
m

(
3

2

)m

� 2llog2(3). (17)

Nl′ν,ρ (m) is the number of sites in l′ν,ρ with coordination 4 × 3m. In equation (17), Nlν,ρ (m)

has been estimated using inequality (14).
Now we need to prove that no loop of length |l| passing τ and µ can enclose the site i.

We suppose, ad absurdum, the existence of this loop and we call it lτ,σ (σ is the other site of
the loop belonging to the plaquette of µ). Since τ and σ are connected by a loop of length |l|,
from (16) we have r̄τ,σ < 2|l|log2(3). Hence, r̄ρ,σ > 2|l|log2(3). If lτ,σ also surrounded i, for the
planarity of the dual graph, there should exist two sites γ and δ belonging both to lτ,σ and to
lν,ρ (see figure 8 for an illustration).

We denote by |γ, δ|lτ,σ the length of the part of the walk l′τ,σ within the sites γ and δ. We
have

|ρ, δ|lν,ρ + |δ, γ |lν,ρ + |γ, ν|lν,ρ = |l| − 2
(18)

|σ, δ|lτ,σ + |δ, γ |lτ,σ + |γ, τ |lτ,σ = |l| − 2

and then

|ρ, δ|lν,ρ + |γ, ν|lν,ρ + |σ, δ|lτ,σ + |γ, τ |lτ,σ � 2(|l| − 2). (19)

On the other hand, since r̄ν,τ > |l|log2(3) and r̄ρ,σ > |l|log2(3), from (16) we get

|ρ, δ|lν,ρ + |σ, δ|lτ,σ > |l| − 2
(20)

|ν, γ |lν,ρ + |τ, γ |lτ,σ > |l| − 2
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Figure 8. By the heavy continuous line we denote lν,ρ , and by the dashed line lτ,σ .

and then

|ρ, δ|lν,ρ + |σ, δ|lτ,σ + |ν, γ |lν,ρ + |τ, γ |lτ,σ > 2(|l| − 2). (21)

Equation (21) cannot hold together with equation (19). Therefore, assuming the existence of
the site τ , we obtain the contradiction we wanted to prove. Hence, we have concluded the
proof of the bound on Z̃l̄αi

.

7. Euclidean length of a loop

With the bound on Z̃l̄αi
proved in the previous section, we obtain that the probability for the

site i to have negative magnetization can be estimated as

p−
i �

∞∑
|l|=0

Ni(|l|)10|l|log2(3) e(K−β)|l|. (22)

Ni(|l|) is the number of points in the dual lattice which can be crossed by a SOS of length |l|
which encloses i.

An estimate of Ni(|l|) can be obtained by using again the fact that the dual graph is
embeddable in a two-dimensional Euclidean space. In particular, in a walk in the dual graph,
a step crossing the site α covers in the Euclidean space a distance smaller than or equal to
z′
α = r̄α−,α+ , where α− and α+ are, respectively, the sites preceding and following α within the

walk. Let us consider li SOS loop in the dual graph of length |l| and enclosing the site i of the
carpet. We call d(li) the distance covered by this loop in the Euclidean space, and we get

d(li) �
∑
α∈li

z′
α � Z′

li
+

∑
α∈l′i

zα (23)

In the sum we separate the contribution of the site with highest coordination number and use
the simple property that z′

α < zα . Z ′̄
li

represents the distance along the boundary between the
sites preceding and following the site of highest coordination number in a walk of length |l|.
In the previous section, we proved that Z ′̄

li
� 2llog2(3). Furthermore, the sum over all sites

belonging to l′i has been already evaluated in (17). Therefore, we have that

d(li) � 8|l|log2(3). (24)
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The number of sites of the dual graph, distance from i in the Euclidean space less than d(li),
is smaller than πd2(li). Therefore we obtain that Ni(l) � π(8|l|log2(3))2. Hence

p−
i �

∞∑
|l|=0

C|l|3 log2(3) e(K−β)|l| (25)

where C is a suitable real constant. For small enough values β, the sum in (25) is smaller than
ε < 1/2. Thus, we obtain the uniform bound on p−

i proving the existence of spontaneous
magnetization at finite temperature.
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